Abstract
Background and aimOxidative stress and impaired insulin secretion is an underlying major risk factor for the development of type 2 diabetes (T2D). Uncoupling protein-2 (UCP2) is involved in the regulation of reactive oxygen species production, insulin secretion, and lipid metabolism. Based on this we aimed to find an association of UCP2 (G-866A) polymorphism with the risk of T2D in South Indian population. MethodsA total of 318 T2D patients and 312 controls were enrolled in this study. All the study subjects were genotyped for UCP2 (G-866A) polymorphism using polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP). Fasting blood glucose, HbA1c, serum lipid profile, systolic and diastolic blood pressure were measured by standard biochemical methods. Fasting serum insulin level was measured by ELISA. ResultsIn UCP2 (G-866A) polymorphism, the distribution of GA (46%) and AA (14%) genotypes were significantly higher in T2D patients than the healthy controls. The frequency of GA and AA genotypes have high risk towards the development of T2D with an Odds Ratio (OR) of 1.55 (P = 0.01) and 2.04 (P = 0.01) respectively. Moreover, SNP-866 G>A allele was found to be significantly associated with T2D (OR = 1.48, P = 0.001, 95% CI = 1.16–1.88). Further, the UCP2 AA genotype showed significantly decreased level of insulin by the reduction in pancreatic β-cell function in T2D patients. ConclusionUCP2 (G-866A) polymorphism may play a crucial role in the pathogenesis of insulin secretion thus leads to the development of T2D.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.