Abstract
Abstract. Determining the spatiotemporal variability in the annual streamflow volume plays a relevant role in hydrology with regard to improving and implementing sustainable and resilient policies and practices of water resource management. This study investigates annual streamflow volume trends in a newly assembled, consolidated, and validated data set of daily mean river flow records from more than 3000 stations which cover near-natural basins in more than 40 countries across Europe. Although the data set contains streamflow time series from 1900 to 2013 in some stations, the statistical analyses were carried out by including observations from 1950 to 2013 in order to have a consistent and reliable data set over the continent. Trends were detected by calculating the slope of the Theil–Sen line over the annual anomalies of streamflow volume. The results show that annual streamflow volume trends have emerged at European scale, with a marked negative tendency in Mediterranean regions, with about -1×103 m3/(km2 yr−2), and a generally positive trend in northern ones, with about 0.5×103 m3/(km−2 yr−2). The annual streamflow volume trend patterns appear to be in agreement with the continental-scale meteorological observations in response to climate change drivers. In the Mediterranean area, the decline of annual streamflow volumes started in 1965, and since the early 1980s, volumes have consistently been lower than the 1950–2013 average. The spatiotemporal annual streamflow volume patterns observed in this work can help to contextualize short-term trends and regional studies already available in the scientific literature, as well as to provide a valid benchmark for further accurate quantitative analysis of annual streamflow volumes.
Highlights
Elucidating continental patterns of annual streamflow volume changes in the Anthropocene epoch, to confirm unequivocally the effects of climate change and human impact on water resources, has become a challenge in contemporary hydrology (Blöschl et al, 2019)
The anomalies in the annual streamflow volumes for each gauged station were calculated, and in Fig. 4a and b, an example of positive and negative trend evaluated thought the slope of the Theil–Sen line and confirmed by MK test for two stations located in central Europe is reported
This finding is consistent with the results found by Hannaford et al (2013) on the marked decrease in low flow regimes in southern Europe in the last 30 years and with the conclusions found in the work of the International Panel of Climate Change (IPCC) on climate change prospective (IPCC, 2007), which highlighted how, in the Northern Hemisphere, climate change effects that reduce water resource availability have increased notably from the post-1980 period
Summary
Elucidating continental patterns of annual streamflow volume changes in the Anthropocene epoch, to confirm unequivocally the effects of climate change and human impact on water resources, has become a challenge in contemporary hydrology (Blöschl et al, 2019). Most studies have identified the following two separate trends, both from recent observations and using model projections sensitive to climate change: reduced flows in southern and eastern Europe (e.g., Stahl et al, 2010; Caloiero and Veltri, 2019) and increased flows in central and northern Europe (up to ±45 % after 1962, according to Teuling et al, 2019; −10 % to 30 % and +10 % to 40 %, respectively, by the year 2050, under the Special Report on Emissions Scenarios A1B, according to Milly et al, 2005). Masseroni et al.: The 63-year changes in annual streamflow volumes across Europe
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.