Abstract
The Escherichia coli cytotoxic necrotizing factor 1 (CNF1) is organized into three functional domains: the N-terminal part containing the cell-binding domain, a putative central membrane-spanning region, and a C-terminal catalytic region. On the basis of competition assays between CNF1 and GST-recombinant proteins containing different N-terminal fragments, and point mutations, we restricted the binding region to the first 190 amino acids. Hydrophilic amino acids 53-75 are strictly necessary to cell receptor recognition. Using different cnf1-lacZ translational fusions, we demonstrated that the mRNA corresponding to the first 48 codons of cnf1 is involved in the translational regulation of CNF1 synthesis. This regulation consists of both a positive and a negative control. The positive control is exerted by codons 6-20, including a putative downstream box that enhances the translational expression of cnf1. The negative control depends on codons 45-48. In this region, an anti-Shine-Dalgarno sequence, highly homologous to the core of the internal complementary sequence already reported for growth rate-regulated metabolic genes, has been detected. To some extent, the inner structural organization of CNF1 would thus suggest the compiling of several functions in a single mRNA protein system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.