Abstract

Preclinical evidence has suggested a possible role for the 5-HT6 receptor in the treatment of cognitive dysfunction. However, currently there is little neurochemical evidence suggesting the mechanism(s) which may be involved. Using the selective 5-HT6 antagonist SB-271046 and in vivo microdialysis, we have evaluated the effects of this compound on the modulation of basal neurotransmitter release within multiple brain regions of the freely moving rat. SB-271046 produced no change in basal levels of dopamine (DA), norepinephrine (NE) or 5-HT in the striatum, frontal cortex, dorsal hippocampus or nucleus accumbens. Similarly, this compound had no effect on excitatory neurotransmission in the striatum or nucleus accumbens. Conversely, SB-271046 produced 3- and 2-fold increases in extracellular glutamate levels in both frontal cortex and dorsal hippocampus, respectively. These effects were completely attenuated by infusion of tetrodotoxin but unaffected by the muscarinic antagonist, atropine. Here we demonstrate for the first time the selective enhancement of excitatory neurotransmission by SB-271046 in those brain regions implicated in cognitive and memory function, and provide mechanistic evidence in support of a possible therapeutic role for 5-HT6 receptor antagonists in the treatment of cognitive and memory dysfunction.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.