Abstract

The action of four benzylisoquinoline alkaloids (two aporphines-glaucine and apomorphine, a benzylisoquinoline-papaverine and a bisbenzyltetrahydroisoquinoline-antioquine) on 5-HT-induced contraction in rat thoracic aorta has been examined and compared with that of the control drugs: ketanserin, nifedipine, prazosin and phentolamine. The relaxant action on 5-HT-induced contraction was contrasted with that on the contraction induced by noradrenaline and KCl. The results obtained with control drugs show that ketanserin has clear selectivity for 5-HT receptors, whereas prazosin and phentolamine have high selectivity for the alpha1-adrenoceptor and nifedipine seems to have a more potent effect on KCl-induced contraction than on that induced by 5-HT or noradrenaline. The contraction evoked by 5-HT (10 microM) was inhibited in a concentration-dependent manner by all the alkaloids. The order of potency was: papaverine = glaucine > apomorphine > antioquine. Papaverine had a non-specific relaxant action on 5-HT-, noradrenaline- and KCl-induced contraction, antioquine had a weak relaxant action on the agonist assays, and glaucine and apomorphine inhibited noradrenaline- and 5-HT-induced contraction more potently than they inhibited the K+-depolarized response. These results indicate that the aporphines assayed, S-glaucine and R-aporphine, had selective action against agonist (noradrenaline or 5-HT)-induced contraction rather than against KCl-depolarization of rat aorta. In contrast papaverine, a benzylisoquinoline alkaloid, relaxes all agents used non-selectively as could be expected from the lack of specificity that characterizes this alkaloid.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call