Abstract

Recent advances in deformable mirror technology for correcting wavefront errors and in pupil shapes and masks for coronagraphic suppression of diffracted starlight enable a powerful approach to detecting extrasolar planets in reflected (scattered) starlight at visible wavelengths. We discuss the planet-finding performance of Hubble-like telescopes using these technical advances. A telescope of aperture of at least 4 meters could accomplish the goals of the Terrestrial Planet Finder (TPF) mission. The '4mTPF' detects an Earth around a Sun at five parsecs in about one hour of integration time. It finds molecular oxygen, ozone, water vapor, the 'red edge' of chlorophyll-containing land-plant leaves, and the total atmospheric column density -- all in forty hours or less. The 4mTPF has a strong science program of discovery and characterization of extrasolar planets and planetary systems, including other worlds like Earth. With other astronomical instruments sharing the focal plane, the 4mTPF could also continue and expand the general program of astronomical research of the Hubble Space Telescope.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.