Abstract

Previously, we have suggested a hypothesis that the metabolic net water efflux from the cells is a key mechanism for metabolic controlling semipermeable properties of the cell membrane, dysfunction of which is a common consequence of cell pathology. The existence of the electrogenic Na/K-pump in the cell membrane, beating high ATP utilizing the machine in cell, which by activation of mitochondrial function stimulate endogen water formation making it as a key mechanism for the generation of metabolic water efflux from the cells and its dysfunction as a primary step of cell pathology. It is known that the intracellular concentration Ca2+([Ca]i) which is a strong inhibitor for Na/K-pump, controlling by intracellular cyclic nucleotides dependent systems that are extra sensitive to weak chemical and physical signals, unable to activate ionic channels in the membrane. In our earlier studies, we have shown that the activation of both cGMP-activated Ca-pump in the cell membrane and Na/Ca exchange in forwarding (F) mode and cAMP-activated Na/Ca exchange in reverse (R) mode by generating water efflux from the cells, having key roles in controlling low permeability membrane for inward Na+ current (INa) controlling semipermeable properties of membrane and gradient these ions on the membrane, i.e they have a protective function of cell preceding to inward water-induced decrease Na gradient on the cell membrane. It was shown that the soluble guanylate cyclase (sGC) which is sensitive even to water structure changes of cell bathing medium, serves as a sensor for activation cGMP-dependent FNa/Ca exchange while G proteins in the membrane are sensors for activation cAMP-dependent RNa/Ca exchange. The cGMP induced activation of Ca-pump and FNa/Ca exchange by the decrease of [Ca]i–induced activation of Na/K pump activate water efflux from the cell and controlling the Na gradient on the membrane. While the same function doing the cAMP-dependent RNa/Ca exchange because of its electrogenicity and [Ca]i–induced activation of mitochondrial formation water molecules. By our previous study have shown that the activation of cGMP-dependent FNa/Ca exchange has pain relief while the activation of cAMP-dependent RNa/Ca exchange pain generation effects. It was also shown also that 4Hz pulsing magnetic fields, which activation of cGMP- dependent FNa/Ca exchange have relaxation effects on heart muscles and depressed acetylcholine (Ach) sensitivity cell membrane sensitivity, pain relief and antitumor effects. The accumulation of our and literature data on pain and stress relief, antitumor and antivirus effects of 4Hz PMF allow us to hypothesizes that 4Hz–induced activation of cGMP-dependent F Na/Ca exchange can serve as a universal therapeutic tool to increase the resistance of the cells to pathological factors directed to reverse water efflux into water influx in the cells and increases inward Na current which is the primary step of cell pathology. To check this hypothesis, in this present work the 4Hz effect on voluntary patients who have been subjected by different stress on biochemical characteristics of blood we have studied which serve as a marker for pain–the stress of organism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call