Abstract

Mammalian cells possess a variety of amino acid-transport systems with overlapping substrate specificity. System L is one of the major amino acid-transport systems in all non-epithelial cells. Its molecular structure is not known. To clone the neutral amino acid-transporter system L, we followed an expression cloning strategy using Xenopus laevis oocytes. A cDNA library derived from C6-BU-1 rat glioma cells was used as a source, because high expression of system L activity could be demonstrated with polyadenylated RNA isolated from these cells, when injected into Xenopus laevis oocytes [Bröer, Bröer and Hamprecht (1994) Biochim. Biophys. Acta 1192, 95-100]. A single clone (ILAT) was identified, the sense cRNA of which, on injection into Xenopus laevis oocytes, stimulated sodium-independent isoleucine transport by about 100-fold. Further characterization revealed that transport of cationic amino acids was also stimulated. Sequencing of the cDNA showed that the identified clone is the heavy chain of the rat 4F2 surface antigen, a marker of tumour cells and activated lymphocytes. Uptake of neutral and cationic amino acids was not stimulated by the presence of Na+ ions. Antisense cRNA transcribed from this clone or antisense oligonucleotides, when co-injected with polyadenylated RNA from C6-BU-1 rat glioma cells, completely suppressed system L-like isoleucine-transport activity. We conclude that ILAT is necessary for expression of system L-like amino acid-transport activity by polyadenylated RNA from C6-BU-1 rat glioma cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.