Abstract

ABSTRACTCombined time‐lapse reservoir simulation and seismic modelling has been performed on both 1D and 3D models of a channelized turbidite reservoir. The models have been built using core, log, laboratory and seismic data from the Nelson Field (central North Sea) as a template. Oil and water movement in the main channels, channel margins and interchannel regions is investigated, with a particular focus being the effect of poor net‐to‐gross. The analysis confirms that saturation effects dominate the response whilst stress‐sensitivity effects play a minor role. The trough–peak signature in the seismic difference volumes formed by the sweep of the water can be continued and mapped slightly further than the channel margins. This characteristic 4D signature remains roughly intact, despite the complicated depositional architecture, and accurately delineates the area of moved fluid, but it needs additional calibration to combat the detrimental influence of the low net‐to‐gross. Signal strength is largely dependent on reservoir quality, but is also compromised by the net‐to‐gross, fluid distribution and, more critically, by the exact timing of the seismic survey. For example, a region of bypassed oil zone remains undetected as it forms early during the production. This work demonstrates that to understand fully the 4D signature at a quantitative level requires adequate knowledge of the fluid properties, but also, more critically, the geology.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.