Abstract

Evolution in the mass function of galaxy clusters sensitively traces both the expansion history of the Universe and cosmological structure formation. Robust cluster mass determinations are a key ingredient for a reliable measurement of this evolution, especially at high redshift. Weak gravitational lensing is a promising tool for, on average, unbiased mass estimates. This weak lensing project aims at measuring reliable weak lensing masses for a complete X-ray selected sample of 36 high redshift (0.35<z<0.9) clusters. The goal of this paper is to demonstrate the robustness of the methodology against commonly encountered problems, including pure instrumental effects, the presence of bright (8--9 mag) stars close to the cluster centre, ground based measurements of high-z (z~0.8) clusters, and the presence of massive unrelated structures along the line-sight. We select a subsample of seven clusters observed with MMT/Megacam. Instrumental effects are checked in detail by cross-comparison with an archival CFHT/MegaCam observation. We derive mass estimates for seven clusters by modelling the tangential shear with an NFW profile, in two cases with multiple components to account for projected structures in the line-of-sight. We firmly detect lensing signals from all seven clusters at more than $3.5\sigma$ and determine their masses, ranging from $10^{14} M_{\odot}$ to $10^{15} M_{\odot}$, despite the presence of nearby bright stars. We retrieve the lensing signal of more than one cluster in the CL 1701+6414 field, while apparently observing CL 1701+6414 through a massive foreground filament. We also find a multi-peaked shear signal in CL 1641+4001. Shear structures measured in the MMT and CFHT images of CL 1701+6414 are highly correlated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.