Abstract

A series of upgrades have been undertaken at the High Flux Isotope Reactor (HFIR) at Oak Ridge National Laboratory, including the installation of a supercritical hydrogen moderator (T≃ 20 K), which has boosted the flux of long-wavelength neutrons by over two orders of magnitude. In order to take advantage of the new capabilities, a 40 m-long small-angle neutron scattering (SANS) instrument has been constructed, which utilizes a mechanical velocity selector, pinhole collimation and a high-count-rate (>105 Hz) large-area (1 m2) two-dimensional position-sensitive detector. The incident wavelength (λ), resolution (Δλ/λ), incident collimation and sample-to-detector distance are independently variable under computer control. The detector can be moved up to 45 cm off-axis to increase the overallQrange [<0.001 <Q= (4π/λ)sinθ < 1 Å−1, where 2θ is the angle of scatter]. The design and characteristics of this instrument are described, along with examples of scattering data to illustrate the performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.