Abstract

The 3rd International Meeting on Gene Therapy in Rheumatology and Orthopaedics was held in Boston, Massachusetts, USA in May 2004. Keystone lectures delivered by Drs Joseph Glorioso and Inder Verma provided comprehensive, up-to-date information on all major virus vectors. Other invited speakers covered the application of gene therapy to treatment of arthritis, including the latest clinical trial in rheumatoid arthritis, as well as lupus and Sjögren's syndrome. Applications in mesenchymal stem cell biology, tissue repair, and regenerative medicine were also addressed. The field has advanced considerably since the previous meeting in this series, and further clinical trials seem likely.

Highlights

  • Every 3 years, a loosely affiliated network of investigators holds an informal, 2-day meeting to discuss progress in the general area of arthritis gene therapy

  • Rheumatology and orthopedics provide valuable niches for gene therapy. These disciplines may find themselves in the forefront when it comes to clinical applications. Many of these applications are well suited to gene transfer approaches, and the potential patient population is very large

  • Because most conditions are debilitating rather than lethal, safety is a dominating issue that determines the types of vectors that are acceptable

Read more

Summary

Introduction

Every 3 years, a loosely affiliated network of investigators holds an informal, 2-day meeting to discuss progress in the general area of arthritis gene therapy. Ex vivo approaches to the repair of cartilage using genetically modified chondrocytes and MSCs were discussed by Alan Nixon (Cornell University, Ithaca, NY, USA) and Klaus Von der Mark (University of Erlangen-Nuernberg, Germany), respectively The former speaker described experiments in horses in which allogeneic chondrocytes were transduced with equine insulin-like growth factor-1 or human bone morphogenetic protein (BMP)-7, incorporated into a fibrin clot, and implanted into surgically created, partial thickness cartilage lesions in horses [28]. Christopher Niyibizi (Hershey Medical School, Hershey, PA, USA) studied the gene therapy of OI using the oim mouse, which fails to produce the α2-chain of type I collagen and has a recessive condition resembling human OI He has been able to correct the phenotype in cultured fibroblasts in vitro and in patches of skin in vivo, using an adenovirus to transfer the wild-type cDNA encoding the α2 chain of type I collagen [41]. At the time of the meeting, the vector had been administered safely to three individuals, but no clinical data were available

Conclusion
11. Evans CH
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.