Abstract

In rat adipocyte membranes, both beta-adrenergic agonists and beta-adrenergic antagonists competed with (--)[3H]dihydroalprenolol for high affinity (KD 2-4 nM) and low capacity binding sites. The antagonists but not the agonists competed with (--)[3H]dihydroalprenolol for lower affinity and higher capacity sites. The present studies were performed in order to characterize the adipocyte beta-adrenergic receptor and distinguish it from low affinity, higher capacity sites which were heat-labile and not stereoselective. When isoproterenol was used to define the nonspecific binding, saturation studies showed a single binding site with a capacity of approximately 100 fmol/mg membrane protein (corresponding to approximately 50,000 sites/adipocyte). Binding was saturated by 10 nM (--)[3H]dihydroalprenolol. Approximate KD's of 204 nM were observed. Kinetic analysis of (--)[3H]dihydroalprenolol binding provided an independent measurement of KD between 0.75 and 1.1 nM. This binding site had the characteristics of a beta 1-adrenergic receptor with the potency of isoproterenol greater than norepinephrine greater than or equal to epinephrine as competitors of binding. Furthermore, the KD of inhibition of (--)[3H]dihydroalprenolol binding correlated with the Ki of inhibition by antagonists or Ka of activation by agonists of glycerol release in isolated adipocytes (r = 0.968, P less than 0.001). These results suggest that beta-adrenergic agonists compete with (--)[3H]dihydroalprenolol for the high affinity binding site which represents the physiological site. Furthermore, the use of antagonists (propranolol, alprenolol) to define specific beta-binding includes nonspecific site(s) as well as the beta-adrenergic site. Previous characterization and quantitation of beta receptors in rat fat cell membranes may have been in error by incorporating both types of binding in their measurement.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.