Abstract

Three-dimensional (3D) path of the body centre of mass (CM) over an entire stride was computed from ground reaction forces during walking at constant average speed on a treadmill mounted on 3D force sensors. Data were obtained from 18 healthy adults at speeds ranging from 0.30 to 1.40 m s −1, in 0.1 m s −1 increments. Six subsequent strides were analyzed for each subject and speed (total strides=1296). The test session lasted about 30 min (10 min for walking). The CM path had an upward concave figure-of-eight shape that was highly consistent within and across subjects. Vertical displacement of the CM increased monotonically as a function of walking speed. The forward and particularly lateral displacements of the CM showed a U-shaped relationship to speed. The same held for the total 3D displacement (25.6–16.0 cm, depending on the speed). The results provide normative benchmarks and suggest hypotheses for further physiologic and clinical research. The familiar inverted pendulum model might be expanded to gyroscopic, “spin-and-turn” models. Abnormalities of the 3D path might flag motor impairments and recovery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.