Abstract

The 3D incompressible Euler equations with a passive scalar $\theta$ are considered in a smooth domain $\Omega\subset \mathbb{R}^{3}$ with no-normal-flow boundary conditions $\bu\cdot\bhn|_{\partial\Omega} = 0$. It is shown that smooth solutions blow up in a finite time if a null (zero) point develops in the vector $\bB = \nabla q\times\nabla\theta$, provided $\bB$ has no null points initially\,: $\bom = \mbox{curl}\,\bu$ is the vorticity and $q = \bom\cdot\nabla\theta$ is a potential vorticity. The presence of the passive scalar concentration $\theta$ is an essential component of this criterion in detecting the formation of a singularity. The problem is discussed in the light of a kinematic result by Graham and Henyey (2000) on the non-existence of Clebsch potentials in the neighbourhood of null points.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.