Abstract

The cellular localization of the 35 kDa, low molecular mass acid metallophosphatase (LMW AcPase) from the frog (Rana esculenta) liver and its activity towards P-Ser and P-Tyr phosphorylated peptides were studied. This enzyme was localized to the cytoplasm of hepatocytes but did not appear in other cells of liver tissue (endothelium, macrophages, blood cells). This LMW AcPase does not display activity towards (32)P-phosphorylase a under conditions standard for the enzymes of PPP family. Proteins containing P-Ser: rabbit (32)P-phosphorylasea and phosvitin are hydrolysed only at acidic pH and are poor substrates for this enzyme. The frog AcPase is not inhibited by okadaic acid and F(-) ions, the Ser/Thr protein phosphatase inhibitors. Moreover, the frog enzyme does not cross-react with specific antisera directed against N-terminal fragment of human PP2A and C-terminal conserved fragment of the eukaryotic PP2A catalytic subunits. These results exclude LMW AcPase from belonging to Ser/Thr protein phosphatases: PP1c or PP2Ac. In addition to P-Tyr, this enzyme hydrolyses efficiently at acidic pH P-Tyr phosphorylated peptides (hirudin and gastrin fragments). K(m) value for the hirudin fragment (7.55 +/- 1.59 x 10(-6) M) is 2-3 orders of magnitude lower in comparison with other substrates tested. The enzyme is inhibited competitively by typical inhibitors of protein tyrosine phosphatases (PTPases): sodium orthovanadate, molybdate and tungstate. These results may suggest that the LMW AcPase of frog liver can act as PTPase in vivo. A different cellular localization and different response to inhibition by tetrahedral oxyanions (molybdate, vanadate and tungstate) provide further evidence that LMW AcPase of frog liver is distinct from the mammalian tartrate-resistant acid phosphatases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.