Abstract

The 3-loop invariant (or, the 3-loop polynomial) of a knot is a rational form (or, a polynomial) presenting the 3-loop part of the Kontsevich invariant of knots. In this paper, we calculate the 3-loop polynomial of knots obtained by plumbing the doubles of two knots; this class of knots includes untwisted Whitehead doubles. We construct the 3-loop invariant by calculating the rational version of the Aarhus integral of a surgery presentation. As a consequence, we obtain an explicit presentation of the 3-loop polynomial for the knots.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.