Abstract

The efficient partitioning of the 2microm plasmid of Saccharomyces cerevisiae at cell division requires two plasmid-encoded proteins (Rep1p and Rep2p) and a cis-acting locus, REP3 (STB). By using protein hybrids containing fusions of the Rep proteins to green fluorescent protein (GFP), we show here that fluorescence from GFP-Rep1p or GFP-Rep2p is almost exclusively localized in the nucleus in a cir+ strain. Nuclear localization of GFP-Rep1p and GFP-Rep2p, though discernible, is less efficient in a cir(0) host. GFP-Rep2p or GFP-Rep1p is able to promote the stability of a 2microm circle-derived plasmid harboring REP1 or REP2, respectively, in a cir(0) background. Under these conditions, fluorescence from GFP-Rep2p or GFP-Rep1p is concentrated within the nucleus, as is the case in cir+ cells. This characteristic nuclear accumulation is not dependent on the expression of the FLP or RAF1 gene of the 2microm circle. Nuclear colocalization of Rep1p and Rep2p is consistent with the hypothesis that the two proteins directly or indirectly interact to form a functional bipartite or high-order protein complex. Immunoprecipitation experiments as well as baiting assays using GST-Rep hybrid proteins suggest a direct interaction between Rep1p and Rep2p which, in principle, may be modulated by other yeast proteins. Furthermore, these assays provide evidence for Rep1p-Rep1p and Rep2p-Rep2p associations as well. The sum of these interactions may be important in controlling the effective cellular concentration of the Rep1p-Rep2p complex.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.