Abstract

Recent studies have shown that only quinones with a 2-methoxy group can act simultaneously as the primary (QA) and secondary (QB) electron acceptors in photosynthetic reaction centers from purple bacteria such as Rb. sphaeroides. 13C HYSCORE measurements of the 2-methoxy group in the semiquinone states, SQA and SQB, were compared with DFT calculations of the 13C hyperfine couplings as a function of the 2-methoxy dihedral angle. X-ray structure comparisons support 2-methoxy dihedral angle assignments corresponding to a redox potential gap (ΔEm) between QA and QB of 175–193 mV. A model having a methyl group substituted for the 2-methoxy group exhibits no electron affinity difference. This is consistent with the failure of a 2-methyl ubiquinone analogue to function as QB in mutant reaction centers with a ΔEm of ∼160–195 mV. The conclusion reached is that the 2-methoxy group is the principal determinant of electron transfer from QA to QB in type II photosynthetic reaction centers with ubiquinone serving as both acceptor quinones.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call