Abstract

Connectivity plays an important role in measuring the fault tolerance of interconnection networks. The g-good-neighbor connectivity of an interconnection network G is the minimum cardinality of g-good-neighbor cuts. Diagnosability of a multiprocessor system is one important study topic. A new measure for fault diagnosis of the system restrains that every fault-free node has at least g fault-free neighbor vertices, which is called the g-good-neighbor diagnosability of the system. As a famous topology structure of interconnection networks, the n-dimensional bubble-sort star graph BSn has many good properties. In this paper, we prove that 2-good-neighbor connectivity of BSn is 8n−22 for n≥5 and the 2-good-neighbor connectivity of BS4 is 8; the 2-good-neighbor diagnosability of BSn is 8n−19 under the PMC model and MM∗ model for n≥5.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.