Abstract

AbstractLaman's characterization of minimally rigid 2‐dimensional generic frameworks gives a matroid structure on the edge set of the underlying graph, as was first pointed out and exploited by L. Lovász and Y. Yemini. Global rigidity has only recently been characterized by a combination of two results due to T. Jordán and the first named author, and R. Connelly, respectively. We use these characterizations to investigate how graph theoretic properties such as transitivity, connectivity and regularity influence (2‐dimensional generic) rigidity and global rigidity and apply some of these results to reveal rigidity properties of random graphs. In particular, we characterize the globally rigid vertex transitive graphs, and show that a random d‐regular graph is asymptotically almost surely globally rigid for all d ≥ 4. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 154–166, 2007

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.