Abstract
Observations performed by the Earth Observing System Microwave Limb Sounder instrument on board the Aura satellite from 2004 to 2009 (2004 to 2014) were used to investigate the 27 day solar rotational cycle in mesospheric OH (O3) and the physical connection to geomagnetic activity. Data analysis was focused on nighttime measurements at geomagnetic latitudes connected to the outer radiation belts (55°N/S–75°N/S). The applied superposed epoch analysis reveals a distinct 27 day solar rotational signal in OH and O3 during winter in both hemispheres at altitudes >70 km. The OH response is positive and in‐phase with the respective geomagnetic activity signal, lasting for 1–2 days. In contrast, the O3 feedback is negative, delayed by 1 day, and is present up to 4 days afterward. Largest OH (O3) peaks are found at ~75 km, exceeding the 95% significance level and the measurement noise of <2% (<0.5%), while reaching variations of +14% (−7%) with respect to their corresponding background. OH at 75 km is observed to respond to particle precipitation only after a certain threshold of geomagnetic activity is exceeded, depending on the respective OH background. The relation between OH and O3 at 75 km in both hemispheres is found to be nonlinear. In particular, OH has a strong impact on O3 for relatively weak geomagnetic disturbances and accompanying small absolute OH variations (<0.04 ppb). In contrast, catalytic O3 depletion is seen to slow down for stronger geomagnetic variations and OH anomalies (0.04–0.13 ppb), revealing small variations around −0.11 ppm.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.