Abstract
Abstract Optical remote sensing measurements of cirrus cloud properties were collected by one airborne and four ground-based lidar systems over a 32-h period during this cue study from the First ISCCP (International Satellite Cloud Climatology Program) Regional Experiment (FIRE) Intensive Field Observation (IFO) program. The lidar systems were variously equipped to collect linear depolarization, intrinsically calibrated backscatter, and Doppler velocity information. Data presented here describe the temporal evolution and spatial distribution of cirrus clouds over an area encompassing southern and central Wisconsin. The cirrus cloud types include: (a) dissipating subvisual and “thin” fibrous cirrus cloud bands, (b) an isolated mesoscale uncinus complex (MUC), (c) a large-scale, deep cloud that developed into an organized cirrus structure within the lidar array, and (d) a series of intensifying mesoscale cirrus cloud masses. Although the cirrus frequently developed in the vertical from particle fallstreaks ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.