Abstract
It is unknown how the DNA repair enzyme OGG1 relates to healthy aging in humans, in particular to inflammaging, that is associated with increased levels of TNF-α. This study aimed (1) to investigate how 24-h profiles for OGG1 change during healthy aging and (2) to analyze the relationship of OGG1 with TNF-α, central body fat, cortisol and oxidative DNA/RNA damage. In a cross-sectional study in 20 healthy older and 20 young women, salivary levels of OGG1, TNF-α, cortisol and oxidative DNA/RNA damage were quantified by ELISAs every 4 h for a 24-h period. Trunk circumferences were taken as measures of central body fat. Older women, compared to young women, exhibited significantly lower protein levels of OGG1 throughout the whole 24-h period, a 2.5 times lower 24-h mean level for OGG1 (P < 0.00001) and loss of 24-h variation of OGG1. Both age groups demonstrated significant 24-h variation for TNF-alpha, cortisol and oxidative damage. The 24-h mean level for TNF-α was more than twice as high in older compared to young women (P = 0.011). Regression analysis detected that age, TNF-α and waist circumference were negative significant predictors of OGG1, explaining 56% of variance of OGG1 (P < 0.00001), while levels of cortisol and oxidative damage were no predictors of OGG1. Results indicate a strong decrease of protein levels of OGG1 and a loss of 24-h variation during natural cellular aging. The negative relationship, found between OGG1 and TNF-α and between OGG1 and waist circumference, suggests involvement of proinflammatory processes in DNA repair.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.