Abstract

The [2+2] cycloaddition-retroelectrocyclization (CA-RE) reaction between electron-rich alkynes and electron-deficient alkenes is an efficient procedure to create nonplanar donor-acceptor (D-A) chromophores in both molecular and polymeric platforms. They feature attractive properties including intramolecular charge-transfer (ICT) bands, nonlinear optical properties, and redox activities for use in next-generation electronic and optoelectronic devices. This Review summarizes the development of the CA-RE reaction, starting from the initial reports with organometallic compounds to the extension to purely organic systems. The structural requirements for rapid, high-yielding transformations with true click chemistry character are illustrated by examples that include the broad alkyne and alkene substitution modes. The CA-RE click reaction has been successfully applied to polymer synthesis, with the resulting polymeric push-pull chromophores finding many interesting applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call