Abstract

AbstractForecast of eruptive activity is a core challenge in volcanology. Here, we present an actual forecast for the end of the 2021 La Palma eruption. Using continuous GNSS data, we identified a co‐eruptive quasi‐exponential deflation trend. Assuming mass conservation, magma upflow from an overpressurized reservoir drives the eruptive process. The forecast was carried out during the eruption, however there was uncertainty in the key percentage of drop in driving pressure necessary to stop this eruption. In hindcast, we explore how forecast uncertainty reduces with increase in ingested near‐real time data. We conclude that precise forecasts could have been possible, but only after twice a characteristic exponential decay time‐scale, providing error estimates of 45% of the actual duration. We verify the mass conservation assumption using eruptive material volumes and propose that the eruption dynamics was controlled by a main reservoir at a depth close to Moho discontinuity beneath Cumbre Vieja volcano.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.