Abstract

The major (Mw 7.9) earthquake that struck the Gulf of Alaska near Kodiak Island on 23 January 2018 was a rare, mid-plate strike-slip event that triggered a minor trans-Pacific tsunami. An analysis of the simultaneous measurements of tsunami waveforms at 21 open-ocean sites (including three independent arrays of stations) and 27 coastal tide gauges in the Gulf of Alaska and along the coast of North America has enabled us to examine properties of the 2018 tsunami, its transformation over the continental slope and shelf, and its amplification as the waves approached the coast. Results show that the tsunami wave variance decreased monotonically along the west coast from northern British Columbia to southern Oregon. Based on the variance structure, the mean amplification factor for Tofino on the west coast of Vancouver Island (a “beacon” site with a long time series), was $$A_{RMS}^{Tof}$$ = 5.3, in good agreement with corresponding estimates for four major past events; 4.5 (2009 Samoa), 4.3 (2010 Chile), 6.3 (2011 Tohoku) and 5.2 (2012 Haida Gwaii). This variance-derived amplification for Tofino was greater than the amplification factor based on the amplitude ratio ($$A_{{}}^{Tof}$$ = 3.2). Spectral analysis of the records showed that the tsunami had a relatively large high-frequency content (i.e., was “blueish”), with nearly 90% of the total energy in the open ocean at frequencies > 1.7 cph (periods < 35 min) and with an “integral frequency scale” of 4 cph (period 15 min). Wavelet analysis revealed strong dispersion of the propagating tsunami waves, in agreement with theoretical estimates. The abrupt jump in water depth of about 4 cm detected at DART 46409, located mid-plate about 85 km from the epicenter of the 2018 Kodiak earthquake, appears to have been due to an earthquake-induced seafloor subsidence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.