Abstract

We report on the aftermath of a magnetar outburst from the young, high-magnetic-field radio pulsar PSR J1119-6127 that occurred on 2016 July 27. We present the results of a monitoring campaign using the Neil Gehrels Swift X-ray Telescope, NuSTAR, and XMM-Newton. After reaching a peak luminosity of ~300 times the quiescent luminosity, the pulsar's X-ray flux declined by factor of ~50 on a time scale of several months. The X-ray spectra are well described by a blackbody and a hard power-law tail. After an initial rapid decline during the first day of the outburst, we observe the blackbody temperature rising from kT = 0.9 keV to 1.05 keV during the first two weeks of the outburst, before cooling to 0.9 keV. During this time, the blackbody radius decreases monotonically by a factor of ~4 over a span of nearly 200 days. We also report a heretofore unseen highly pulsed hard X-ray emission component, which fades on a similar timescale to the soft X-ray flux, as predicted by models of relaxation of magnetospheric current twists. The previously reported spin-up glitch which accompanied this outburst was followed by a period of enhanced and erratic torque, leading to a net spin-down of $\sim3.5\times10^{-4}$ Hz, a factor of ~24 over-recovery. We suggest that this and other radiatively loud magnetar-type glitch recoveries are dominated by magnetospheric processes, in contrast to conventional radio pulsar glitch recoveries which are dominated by internal physics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.