Abstract

The series of language recognition evaluations (LRE's) conducted by the National Institute of Standards and Technology (NIST) have been one of the driving forces in advancing spoken language recognition technology. This paper presents a shared view of five institutions resulting from our collaboration toward LRE 2015 submissions under the names of I2R, Fan-tastic4, and SingaMS. Among others, LRE'15 emphasizes on language detection in the context of closely related languages, which is different from previous LRE's. From the perspective of language recognition system design, we have witnessed a major paradigm shift in adopting deep neural network (DNN) for both feature extraction and classifier. In particular, deep bottleneck features (DBF) have a significant advantage in replacing the shifted-delta-cepstral (SDC) which has been the only option in the past. We foresee deep learning is going to serve as a major driving force in advancing spoken language recognition system in the coming years.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.