Abstract

Glacial retreat in recent decades has exposed unstable slopes and allowed deep water to extend beneath some of those slopes. Slope failure at the terminus of Tyndall Glacier on 17 October 2015 sent 180 million tons of rock into Taan Fiord, Alaska. The resulting tsunami reached elevations as high as 193 m, one of the highest tsunami runups ever documented worldwide. Precursory deformation began decades before failure, and the event left a distinct sedimentary record, showing that geologic evidence can help understand past occurrences of similar events, and might provide forewarning. The event was detected within hours through automated seismological techniques, which also estimated the mass and direction of the slide - all of which were later confirmed by remote sensing. Our field observations provide a benchmark for modeling landslide and tsunami hazards. Inverse and forward modeling can provide the framework of a detailed understanding of the geologic and hazards implications of similar events. Our results call attention to an indirect effect of climate change that is increasing the frequency and magnitude of natural hazards near glaciated mountains.

Highlights

  • A further effect of glacial retreat is the creation or extension of bodies of deep water, fresh or marine[11,12], where tsunamis can be generated efficiently (Table 1)

  • The event we describe here in Taan Fiord, Alaska provides the best example to date of a well-documented subaerial landslide that generated a tsunami, and of its impacts on a fjord, coupled with detailed examination of its deposits

  • On 17 October 2015, a massive landslide and tsunami occurred at the head of Taan Fiord, an arm of Icy Bay within Wrangell-St

Read more

Summary

Open coast

Landslides and the tsunamis they may generate. Tsunamis in lakes can create flood risk downstream by flowing into inhabited downstream valleys (e.g.13–15). While tectonic tsunamis have a long period, usually over 10 minutes, the period of the Taan Fiord tsunami was likely similar to the 90 seconds it took the slide to do most of its acceleration and deceleration This difference in period likely had large impacts on temporal and spatial variability in the tsunami flow as it moved onland, and on the erosion and deposition of sediment. In order to mitigate the risk associated with landslide-triggered tsunamis, we suggest the following: 1) revisit geologic records of paleotsunamis to better understand frequency and causal mechanisms of past occurrences; 2) assess areas of potential failure given known glacial histories and evidence of precursory motion; and in areas of particular concern, 3) map areas of likely impact using glacier, landslide, and tsunami inundation models in order to reduce impacts should an event occur; and 4) monitor for landslides using seismic and remote-sensing techniques

Methods
Author Contributions
Findings
Additional Information
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.