Abstract

Abstract The Deepwater Horizon Mobile Offshore Drilling Unit (MODU) was one of several classes of floatable drilling systems. The explosion on April 20, 2010 led to fatalities and the worst oil spill in the U.S. We present an independent estimate of the oil-flow rate into The Gulf caused by the drill-pipe rupture. We employed the NASA Moderate-Resolution Imaging-Spectroradiometer (MODIS) satellite photographs, starting from the days immediately following the disaster, to determine the magnitude of spill. From these images, we obtained the surface area of the spill and calculated the oil flow rate by two different methods based on contrasting luminance within that area. The first assumes a constant thickness for the total area with upper and lower bounds for the thickness. The second separates the area into different patches based on the luminance levels of each. The probability density function (PDF) of such luminance plots showed natural groupings, allowing patches be identifiable. Each patch maps to a specific thickness. This second approach provides a more accurate average thickness. With the assumption that evaporation and other loss amounted to ∼40% of the spill, we obtained, from the first method, a flow rate ranging from 9,300 barrels per day (BPD) to 93,000 BPD. A value of 51,200 BPD was obtained using patch-separation method. This latter estimate was a plausible value, obtained from the current analysis, but with no details presented in an Extended Abstract in OMAE2012, is remarkably consistent with the “official U.S.-Govt. estimates.”

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.