Abstract

Knowledge of seismic properties in an earthquake rupture zone is essential for understanding the factors controlling rupture dynamics. We use data from aftershocks following the Maule earthquake to derive a three‐dimensional seismic velocity model of the central Chile forearc. At 36°S, we find a highvp (>7.0 km/s) and high vp/vs(∼1.89) anomaly lying along the megathrust at 25 km depth, which coincides with a strong forearc Bouguer gravity signal. We interpret this as a subducted topographic high, possibly a former seamount on the Nazca slab. The Maule earthquake nucleated at the anomaly's updip boundary; yet high co‐seismic slip occurred where the megathrust is overlain by lower seismic velocities. Sparse aftershock seismicity occurs within this structure, suggesting that it disrupts normal interface seismogenesis. These findings imply that subducted structures can be conducive to the nucleation of large megathrust earthquakes, even if they subsequently hinder co‐seismic slip and aftershock activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.