Abstract

By the year 2010, it is estimated that 18.1 million people worldwide will die annually because of cardiovascular diseases and stroke. "Global vascular risk" more broadly includes the multiple overlapping disease silos of stroke, myocardial infarction, peripheral arterial disease, and vascular death. Estimation of global vascular risk requires consideration of a variety of variables including demographics, environmental behaviors, and risk factors. Data from multiple studies suggest continuous linear relationships between the physiological vascular risk modulators of blood pressure, lipids, and blood glucose rather than treating these conditions as categorical risk factors. Constellations of risk factors may be more relevant than individual categorical components. Exciting work with novel risk factors may also have predictive value in estimates of global vascular risk. Advances in imaging have led to the measurement of subclinical conditions such as carotid intima-media thickness and subclinical brain conditions such as white matter hyperintensities and silent infarcts. These subclinical measurements may be intermediate stages in the transition from asymptomatic to symptomatic vascular events, appear to be associated with the fundamental vascular risk factors, and represent opportunities to more precisely quantitate disease progression. The expansion of studies in molecular epidemiology and detection of genetic markers underlying vascular risks also promises to extend our precision of global vascular risk estimation. Global vascular risk estimation will require quantitative methods that bundle these multi-dimensional data into more precise estimates of future risk. The power of genetic information coupled with data on demographics, risk-inducing behaviors, vascular risk modulators, biomarkers, and measures of subclinical conditions should provide the most realistic approximation of an individual's future global vascular risk. The ultimate public health benefit, however, will depend on not only identification of global vascular risk but also the realization that we can modify this risk and prove the prediction models wrong.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.