Abstract

Flash photolysis of 2-diazocyclopentane-1,3-dione in aqueous solution produced 2-oxocyclobutylideneketene, which underwent hydration to the enol of 2-oxocyclobutanecarboxylic acid; the enol then isomerized to the keto form of this acid. Rates of the ketene and enol reactions were measured in acid, base, and buffer solutions across the acidity range [H+] = 10(-1)-10(-13) M, and analysis of these data, together with rates of enolization of the keto form of 2-oxocyclobutanecarboxylic acid determined by bromine scavenging, gave keto-enol equilibrium constants as well as acidity constants of the keto and enol forms. The keto-enol equilibrum constants proved to be 2 orders of magnitude less than those reported previously for the next higher homolog, 2-oxocyclopentanecarboxylic acid, reflecting the difficulty of inserting a carbon-carbon double bond into a small, strained carbocyclic ring. The acidity constant of the enol group of 2-oxocyclobutanecarboxylate ion, on the other hand, is greater, by 4 orders of magnitude, than that of the corresponding enol in the cyclopentyl system. This remarkable increase in acidity with diminishing ring size is consistent with the enhanced s character of the orbitals used to make the exocyclic bonds of the smaller cyclobutane ring.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.