Abstract

Let P be a set of n points in R3. The 2-center problem for P is to find two congruent balls of minimum radius whose union covers P. We present a randomized algorithm for computing a 2-center of P that runs in O(β(r⁎)n2log4nloglogn) expected time; here β(r)=1/(1−r/r0)3, r⁎ is the radius of the 2-center balls of P, and r0 is the radius of the smallest enclosing ball of P. The algorithm is near quadratic as long as r⁎ is not too close to r0, which is equivalent to the condition that the centers of the two covering balls be not too close to each other. This improves an earlier slightly super-cubic algorithm of Agarwal, Efrat, and Sharir (2000) [2] (at the cost of making the algorithm performance depend on the center separation of the covering balls).

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.