Abstract
Several new estimates for the [Formula: see text]-adic valuations of Stirling numbers of the second kind are proved. These estimates, together with criteria for when they are sharp, lead to improvements in several known theorems and their proofs, as well as to new theorems, including a long-standing open conjecture by Lengyel. The estimates and criteria all depend on our previous analysis of powers of [Formula: see text] in the denominators of coefficients of higher order Bernoulli polynomials. The corresponding estimates for Stirling numbers of the first kind are also proved. Some attention is given to asymptotic cases, which will be further explored in subsequent publications.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.