Abstract
We establish that there are exactly 500 KTS(33)s admitting an automorphism group fixing one point and acting regularly on the remainder; 436 are over the cyclic group while 64 are over the dicyclic group. There are exactly 243 nonisomorphic STS(33)s underlying the above KTS(33)s; 211 are over the cyclic group while 32 are over the dicyclic group. This gives a significant improvement on the number of known KTS(33)s (at least 528 instead of at least 28).
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.