Abstract

Abstract The present study investigates the interannual variability of the tropical Indian Ocean (IO) based on the transfer routes of wave energy in a set of 61-yr hindcast experiments using a linear ocean model. To understand the basic feature of the IO dipole mode, this paper focuses on the 1994 pure positive event. Two sets of westward transfer episodes in the energy flux associated with Rossby waves (RWs) are identified along the equator during 1994. One set represents the same phase speed as the linear theory of equatorial RWs, while the other set is slightly slower than the theoretical phase speed. The first set originates from the reflection of equatorial Kelvin waves at the eastern boundary of the IO. On the other hand, the second set is found to be associated with off-equatorial RWs generated by southeasterly winds in the southeastern IO, which may account for the appearance of the slower group velocity. A combined empirical orthogonal function (EOF) analysis of energy-flux streamfunction and potential reveals the intense westward signals of energy flux are attributed to off-equatorial RWs associated with predominant wind input in the southeastern IO corresponding to the positive IO dipole event. Significance Statement The present study gains a new insight into the mechanism of the Indian Ocean dipole events using a new diagnostic scheme for wave energy based on 61-yr hindcast experiments. The results have shown the existence of two sets of westward transfer of wave energy at the equator during 1994. One set of westward signals shows the same group velocity with theoretical equatorial Rossby waves that appear reasonably along the equator. The other set of westward signals at the equator represents a slightly slower group velocity than the theoretical equatorial Rossby waves, which is associated with abnormally extended southeasterly winds during the Indian Ocean dipole event.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call