Abstract

This paper aims at best describing the submarine landslide which induced partial submersion of the atolls of Mururoa and Fangataufa in 1979. More precisely, waves propagated along the south coast of Mururoa atoll and penetrated into its lagoon some minutes after the landslide triggering (t = 0 s), whereas a train of eight water waves reached the runway located on the north-east coast of Fangataufa (40 km south of Mururoa) between t = 7 min 30 s and t = 20 min. A numerical model based on shallow water equations is used to simulate the landslide as well as the associated tsunami. Saint-Venant equations are used to propagate the tsunami in coastal areas, whereas the offshore propagation is simulated by solving weakly nonlinear Boussinesq equations. Low- and high-resolution nested grids are used to simulate the tsunami propagation in deep sea and in shallow waters, respectively. Several scenarios have been tested to reproduce the observed water and run-up heights in the near and far fields. The best scenarios correspond to a landslide with a volume in the range (75–90 Mm3) (for a basal friction angle of 35°) and with a basal friction angle in the range (30°–40°) (for a volume of 80 Mm3). These results have been completed by a parametric study on the slide parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.