Abstract

Utilizing historical accounts, field mapping, and photogeology, this paper presents a chronology of, and an analysis of magma transport during, the December 1919 to August 1920 satellitic shield eruption of Mauna Iki on the SW rift zone of Kilauea Volcano, Hawaii. The eruption can be divided into four stages based on the nature of the eruptive activity. Stage 1 consisted of the shallow injection of a dike from the summit region to the eventual eruption site ∼10 km downrift. During stage 2, a low ridge of pahoehoe formed in the vent area; later a large a'a flow broke out of this ridge and flowed ∼8.5 km SW at an average flow front velocity of 0.5 km/day. The eruption continued until mid-August producing almost exclusively pahoehoe, first as gas-rich overflows from a lava pond (stage 3), and later as denser tube-fed lava (stage 4) that reached almost 8 km from the vent at an average flow-front velocity of 0.1 km/day. Magma transport during the Mauna Iki eruption is examined using three criteria: (1) eruption characteristics and volumetric flow rates; (2) changes in the surface height of the Halemaumau lava lake; and (3) tilt measurements made at the summit of Kilauea. We find good correlation between Halemaumau lake activity and the eruptive stages. Additionally, the E-W component of summit tilt tended to mimic the lake activity. The N-S component, however, did not. Multiple storage zones in the shallow summit region probably accounted for the decoupling of E-W and N-S tilt components. Analysis of these criteria shows that at different times during the eruption, magma was either emplaced into the volcano without eruption, hydraulically drained from Halemaumau to Mauna Iki, or fed at steady-state conditions from summit storage to Mauna Iki. Volume calculations indicate that the supply rate to Kilauea during the eruption was around 3 m3/s, similar to that calculated during the Mauna Ulu and Kupaianaha shield-building eruptions, and consistent with previously determined values of long-term supply to Kilauea.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.