Abstract

HIV-1 integrase (HIV-1 IN), a key element of HIV-1-derived lentiviral vectors, is crucial for the stable maintenance of the vector gene by inserting them into host genome. HIV-1 IN has been found to have functions other than integration, such as involving in virion morphology, viral DNA synthesis and viral DNA nuclear import. In our study, the yeast two-hybrid assay identified a tetrapeptide 156KELK159 in HIV-1 IN that was crucial for HIV-1 IN and Daxx interaction. To investigate the functions of the tetrapeptide 156KELK159 of the HIV-1 IN, both the wild type HIV-1 IN and a mutant without 156KELK159 were used to package the EGFP reporter gene contained lentivirus. p24 based titer assay revealed that deleting the tetrapeptide did not affect virus packaging. The result was verified by quantitative real time PCR with viral specific primers. But the 156KELK159 was crucial for lentiviral gene integration. Deleting the tetrapeptide made the percentage of cells expressing the reporter gene significantly decreased and did not affect the level of DNA entered into the cells or nucleus. Real time reverse transcription PCR and FACS were used to detect the lentiviral report gene expression in infection maintaining cells and revealed 156KELK159 did not affect lentiviral vector gene expression. Our results may shed light on the regulatory mechanism of gene integration of lentivirus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call