Abstract
This paper investigates a series of daily solar indices: the sunspot number W (1900–2008), solar flux at 2800 MHz F 10.7 (1947–2008), and a number of X-ray flares N x (1981–2008). The methods of Fourier and wavelet analysis are used to reveal the so-called 156-day Rieger-type periodicity (RTP). The W index is observed to have a statistically significant RTP amplitude in the neighborhood of the solar maxima in most of the solar cycles under study, except for cycles 14, 15, and 23. The 156-day peak is observed to have its largest power during the declining phase of cycle 16, at the maximum of cycle 21, and during the increasing phase of cycles 20 and 23. Statistically significant RTPs are also observed at the minima of cycles 17, 18 and 19. We conclude that there is no stable dependence between RTP and the solar cycle. The wavelet analysis shows that the pattern of the RTP time dependence for the F 10.7 index is almost identical to that of the W index. The correlation coefficient between the RTP curves is 0.95. The correlation coefficients for the pairs of indices W-N x and F 10.7-N x are 0.36 and 0.32, respectively. No time lags are found between the RTP starting points for different indices. Thus, the 156-day quasi-periodicity involves, almost simultaneously, events that occur in active regions of the solar atmosphere at different heights. This paper discusses the possible nature of RTP.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.