Abstract

A well-recognized natural ligand of PPARγ, 15-deoxy-δ(12,14)-prostaglandin J(2) (15d-PGJ(2)) possesses immunomodulatory properties. The aim of this study was to elucidate whether 15d-PGJ(2) was able to attenuate lipopolysaccharide (LPS)-induced inflammatory responses in human retinal pigment epithelial (RPE) cells, which are involved in ocular immune responses. In addition, we examined whether the platelet activating factor (PAF) is associated with the anti-inflammatory activity of 15d-PGJ(2). ARPE19 cells treated with varying concentrations of 15d-PGJ(2) and a PAF antagonist (CV3988) were used in this study. The activity of PAF-acetylhydrolase (PAF-AH) was assayed by treatment with 15d-PGJ(2) and CV3988 in the presence of LPS. 15d-PGJ(2) and CV3988 inhibited the LPS-induced mRNA expression and protein production of interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and intercellular adhesion molecule-1 (ICAM-1) in ARPE19 cells. These effects resulting from 15d-PGJ(2) were not abrogated by the PPARγ antagonist, indicating that the actions were PPARγ-independent. Furthermore, 15d-PGJ(2) and CV3988 enhanced the PAF-AH activity. Additionally, 15d-PGJ(2) inhibited the phosphorylation of the extracellular signal-regulated kinase (ERK) and the activation of nuclear transcription factor-κB (NF-κB). These results demonstrated that 15d-PGJ(2) reduced LPS-stimulated inflammatory responses in ARPE19 cells by enhancing the PAH-AH activity. These results suggest that 15d-PGJ(2) may have potent anti-inflammatory activity against ocular inflammation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call