Abstract

Large air samples were collected in the lower stratosphere (10–12 km) from 43° to 85°S in June 1993, using a special compressor system. For the important trace gases CO, CH4 and CO2, concentration and isotopic analyses were carried out and significant correlations were discovered. The 14CO isotope is considerably in excess of tropospheric levels with very high values from 40 to 120 14CO molecules/cm3 STP (corresponding to 12,500 percent modern carbon, at 30 ppbv), and is negatively correlated with CO. The linear relationship is used to estimate OH to be 2.9×105 cm−3. The 18O/16O ratios for CO are the lowest ever measured and reflect the inverse kinetic isotope effect in the oxidation of CO by OH. The 13C/12C ratios for CO are not much different from tropospheric values and confirm that fractionation is small but also that the in situ contribution from CH4 oxidation is minor. For CH4 a correlation between δ13C and concentration exists from which a fractionation factor for the sink reaction (k12/k13) of about 1.012 is calculated, well in excess of results from laboratory experiments for OH +CH4. The most plausible explanation presently is the removal of approximately 9% of CH4 by Cl atoms, which, as laboratory experiments have just confirmed, induces a very large fractionation. We also reveal a linear correlation between 14CO and 14CO2, precursor and product. Finally, an analysis of potential vorticity shows a structure that seems to give an overall agreement with the trace gas variations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call