Abstract

The final step in the retinoid visual cycle is catalyzed by 11-cis-retinol dehydrogenases (11-cis-RDHs) that oxidize 11-cis-retinol (11cROL) to 11-cis-retinaldehyde (11cRAL). Genetic studies in mice indicate that the full repertoire of 11-cis-RDH enzymes remains to be identified. This study was conducted to characterize the 11-cis-RDH activity of RDH10 in vitro and specifically to determine whether RDH10 can functionally and physically interact with visual cycle proteins. Human RDH10 was expressed in COS1 cells to measure its 11-cis-RDH activity in the presence or absence of purified recombinant cellular retinaldehyde-binding protein (CRALBP). The RPE visual cycle was reconstituted in HEK-293A cells by co-expressing RDH10, CRALBP, RPE-specific 65-kDa protein (RPE65) and lecithin retinol acyltransferase (LRAT). The cells were subsequently treated with all-trans-retinol (atROL), and retinoid profiles were quantified by HPLC. Immunocytochemical and co-immunoprecipitation analyses were performed to determine whether RDH10 physically interacts with other visual cycle proteins. RDH10 oxidized 11cROL to generate 11cRAL in vitro in the presence of CRALBP. RDH10 can use both NAD(+) and NADP(+) as cofactors for 11-cis-RDH activity, although NAD(+) cofactor confers more robust activity. In a cell culture model co-expressing RDH10 with RPE65, LRAT and CRALBP, the visual chromophore 11cRAL was generated from atROL. Immunohistochemistry showed that RDH10 co-localizes with RPE65 and CRALBP in vivo in primary bovine RPE cells. Immunoprecipitation analysis demonstrated that RDH10 physically interacts with CRALBP and RPE65. RDH10 may function in the RPE retinoid visual cycle as an 11-cis-RDH, and thereby partially compensate for the loss of RDH5 function in patients with fundus albipunctatus.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call