Abstract
AbstractThe 11 March 2011 (Mw = 9.0) Tohoku tsunami was recorded by a temporary array of seafloor pressure gauges deployed off the coast of Southern California, demonstrating how dense array data can illustrate and empirically validate predictions of linear tsunami wave propagation characteristics. A noise cross‐correlation method was used to first correct for the pressure gauge instrument phase response. Phase and group travel times were then measured for the first arrival in the pressure gauge tsunami waveforms filtered in narrow bands around 30 periods between 200 and 3000 s. For each period, phase velocities were estimated across the pressure gauge array based on the phase travel time gradient using eikonal tomography. Clear correlation was observed between the phase velocity and long‐wavelength bathymetry variations where fast and slow velocities occurred for deep and shallow water regions, respectively. In particular, velocity gradients are pronounced at the Patton Escarpment and near island plateaus due to the abrupt bathymetry change. In the deep open ocean area, clear phase velocity dispersion is observed. Comparison with numerically calculated tsunami waveforms validates the approach and provides an independent measure of the finite‐frequency effect on phase velocities at long periods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.