Abstract
In this note we establish upper bounds for the 1-width of an m × n matrix of 0's and 1's having three 1's in every row and having a constant number, c, of 1's in every column. When c = 3, this upper bound is n 2 and when c = 4 this estimate is 5n 9 . In these cases the upper bound is best possible, in the sense that for every possible size there exist matrices with this maximal 1-width. The technique of proof is also used to improve the known bound for the 1-width of (0, 1)-matrices with constant line sum 4.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.