Abstract

Large-conductance Ca(2+)-activated K(+) (BK(Ca)) channels encoded by the Slo1 gene are ubiquitously expressed, and they play a role in regulation of many cell types. In excitable cells, BK(Ca) channels and voltage-activated Ca(2+) channels often form functional complexes that allow the cytoplasmic domains of BK(Ca) channels to lie within spatially discrete calcium microdomains. Here, we report a novel protein interaction between the beta1-subunit of L-type voltage-activated calcium channels (Ca(v)beta1) and critical regulatory domains of Slo1 that can occur in the absence of other proteins. This interaction was identified by a yeast two-hybrid screen, and it was confirmed by confocal microscopy in native neurons, by coimmunoprecipitation, and by direct binding assays. The Ca(v)beta1 subunit binds within the calcium bowl domain of Slo1 that mediates a portion of high-affinity Ca(2+) binding to BK(Ca) channels and also to a noncanonical Src homology 3 (SH3) domain-binding motif within Slo1. Binding of Ca(v)beta1 markedly slows Slo1 activation kinetics, and it causes a significant decrease in Ca(2+) sensitivity in inside-out and in dialyzed cells, even in the absence of pore-forming subunits of voltage-gated Ca(2+) channels. The guanylate kinase domain of Ca(v)beta1 mediates Slo1 regulation through its binding to calcium bowl domains, and this domain of Ca(v)beta1 is necessary and sufficient for the observed effects on BK(Ca) activation. Binding of Ca(v)beta1 to SH3-binding motifs may stabilize the interaction with Slo1, or it may contribute to formation of other complexes, but it does not seem to affect Ca(2+)-dependent gating of Slo1. Binding of Ca(v)beta1 does not affect cell surface expression of Slo1 in human embryonic kidney 293T cells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call