Abstract

Aims: The in vivo pharmacology of the sigma 1 receptor (σ1R) is certainly complex; however, σ1R antagonists are of therapeutic interest, because they enhance mu-opioid receptor (MOR)-mediated antinociception and reduce neuropathic pain. Thus, we investigated whether the σ1R is involved in the negative control that glutamate N-methyl-d-aspartate acid receptors (NMDARs) exert on opioid antinociception. Results: The MOR C terminus carries the histidine triad nucleotide-binding protein 1 (HINT1) coupled to the regulator of G-protein signaling RGSZ2-neural nitric oxide synthase assembly. Activated MORs stimulate the production of nitric oxide (NO), and the redox zinc switch RGSZ2 converts this signal into free zinc ions that are required to recruit the redox sensor PKCγ to HINT1 proteins. Then, PKCγ impairs HINT1-RGSZ2 association and enables σ1R-NR1 interaction with MOR-HINT1 complexes to restrain opioid signaling. The inhibition of NOS or the absence of σ1Rs prevents HINT1-PKCγ interaction, and MOR-NMDAR cross-regulation fails. The σ1R antagonists transitorily remove the binding of σ1Rs to NR1 subunits, facilitate the entrance of negative regulators of NMDARs, likely Ca2+-CaM, and prevent NR1 interaction with HINT1, thereby impairing the negative feedback of glutamate on opioid analgesia. Innovation: A redox-regulated process situates MOR signaling under NMDAR control, and in this context, the σ1R binds to the cytosolic C terminal region of the NMDAR NR1 subunit. Conclusion: The σ1R antagonists enhance opioid analgesia in naïve mice by releasing MORs from the negative influence of NMDARs, and they also reset antinociception in morphine tolerant animals. Moreover, σ1R antagonists alleviate neuropathic pain, probably by driving the inhibition of up-regulated NMDARs. Antioxid. Redox Signal. 22, 799–818.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.