Abstract
We present families of symmetric and asymmetric periodic orbits at the 1/1 resonance, for a planetary system consisting of a star and two small bodies, in comparison to the star, moving in the same plane under their mutual gravitational attraction. The stable 1/1 resonant periodic orbits belong to a family which has a planetary branch, with the two planets moving in nearly Keplerian orbits with non zero eccentricities and a satellite branch, where the gravitational interaction between the two planets dominates the attraction from the star and the two planets form a close binary which revolves around the star. The stability regions around periodic orbits along the family are studied. Next, we study the dynamical evolution in time of a planetary system with two planets which is initially trapped in a stable 1/1 resonant periodic motion, when a drag force is included in the system. We prove that if we start with a 1/1 resonant planetary system with large eccentricities, the system migrates, due to the drag force, along the family of periodic orbits and is finally trapped in a satellite orbit. This, in principle, provides a mechanism for the generation of a satellite system: we start with a planetary system and the final stage is a system where the two small bodies form a close binary whose center of mass revolves around the star.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.